3.142 \(\int \frac{A+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^3} \, dx\)

Optimal. Leaf size=106 \[ -\frac{(22 A-3 C) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac{A x}{a^3}-\frac{(7 A-3 C) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2}-\frac{(A+C) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3} \]

[Out]

(A*x)/a^3 - ((A + C)*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) - ((7*A - 3*C)*Tan[c + d*x])/(15*a*d*(a + a*Se
c[c + d*x])^2) - ((22*A - 3*C)*Tan[c + d*x])/(15*d*(a^3 + a^3*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.180472, antiderivative size = 106, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {4053, 3922, 3919, 3794} \[ -\frac{(22 A-3 C) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac{A x}{a^3}-\frac{(7 A-3 C) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2}-\frac{(A+C) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^3,x]

[Out]

(A*x)/a^3 - ((A + C)*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) - ((7*A - 3*C)*Tan[c + d*x])/(15*a*d*(a + a*Se
c[c + d*x])^2) - ((22*A - 3*C)*Tan[c + d*x])/(15*d*(a^3 + a^3*Sec[c + d*x]))

Rule 4053

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[
(a*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e
 + f*x])^(m + 1)*Simp[A*b*(2*m + 1) - a*(A*(m + 1) - C*m)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}
, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 3922

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[((b
*c - a*d)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e
+ f*x])^(m + 1)*Simp[a*c*(2*m + 1) - (b*c - a*d)*(m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f},
 x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 3919

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(c*x)/a,
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{A+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^3} \, dx &=-\frac{(A+C) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac{\int \frac{-5 a A+a (2 A-3 C) \sec (c+d x)}{(a+a \sec (c+d x))^2} \, dx}{5 a^2}\\ &=-\frac{(A+C) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac{(7 A-3 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac{\int \frac{15 a^2 A-a^2 (7 A-3 C) \sec (c+d x)}{a+a \sec (c+d x)} \, dx}{15 a^4}\\ &=\frac{A x}{a^3}-\frac{(A+C) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac{(7 A-3 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac{(22 A-3 C) \int \frac{\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{15 a^2}\\ &=\frac{A x}{a^3}-\frac{(A+C) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac{(7 A-3 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac{(22 A-3 C) \tan (c+d x)}{15 d \left (a^3+a^3 \sec (c+d x)\right )}\\ \end{align*}

Mathematica [B]  time = 0.844389, size = 227, normalized size = 2.14 \[ \frac{\sec \left (\frac{c}{2}\right ) \sec ^5\left (\frac{1}{2} (c+d x)\right ) \left (270 A \sin \left (c+\frac{d x}{2}\right )-230 A \sin \left (c+\frac{3 d x}{2}\right )+90 A \sin \left (2 c+\frac{3 d x}{2}\right )-64 A \sin \left (2 c+\frac{5 d x}{2}\right )+150 A d x \cos \left (c+\frac{d x}{2}\right )+75 A d x \cos \left (c+\frac{3 d x}{2}\right )+75 A d x \cos \left (2 c+\frac{3 d x}{2}\right )+15 A d x \cos \left (2 c+\frac{5 d x}{2}\right )+15 A d x \cos \left (3 c+\frac{5 d x}{2}\right )-370 A \sin \left (\frac{d x}{2}\right )+150 A d x \cos \left (\frac{d x}{2}\right )-30 C \sin \left (c+\frac{d x}{2}\right )+30 C \sin \left (c+\frac{3 d x}{2}\right )+6 C \sin \left (2 c+\frac{5 d x}{2}\right )+30 C \sin \left (\frac{d x}{2}\right )\right )}{480 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^3,x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^5*(150*A*d*x*Cos[(d*x)/2] + 150*A*d*x*Cos[c + (d*x)/2] + 75*A*d*x*Cos[c + (3*d*x)/2
] + 75*A*d*x*Cos[2*c + (3*d*x)/2] + 15*A*d*x*Cos[2*c + (5*d*x)/2] + 15*A*d*x*Cos[3*c + (5*d*x)/2] - 370*A*Sin[
(d*x)/2] + 30*C*Sin[(d*x)/2] + 270*A*Sin[c + (d*x)/2] - 30*C*Sin[c + (d*x)/2] - 230*A*Sin[c + (3*d*x)/2] + 30*
C*Sin[c + (3*d*x)/2] + 90*A*Sin[2*c + (3*d*x)/2] - 64*A*Sin[2*c + (5*d*x)/2] + 6*C*Sin[2*c + (5*d*x)/2]))/(480
*a^3*d)

________________________________________________________________________________________

Maple [A]  time = 0.068, size = 117, normalized size = 1.1 \begin{align*} -{\frac{A}{20\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}}-{\frac{C}{20\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}}+{\frac{A}{3\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}-{\frac{7\,A}{4\,d{a}^{3}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{C}{4\,d{a}^{3}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+2\,{\frac{A\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{d{a}^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x)

[Out]

-1/20/d/a^3*tan(1/2*d*x+1/2*c)^5*A-1/20/d/a^3*C*tan(1/2*d*x+1/2*c)^5+1/3/d/a^3*tan(1/2*d*x+1/2*c)^3*A-7/4/d/a^
3*A*tan(1/2*d*x+1/2*c)+1/4/d/a^3*C*tan(1/2*d*x+1/2*c)+2/d/a^3*A*arctan(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [A]  time = 1.42385, size = 189, normalized size = 1.78 \begin{align*} -\frac{A{\left (\frac{\frac{105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{20 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{3}} - \frac{120 \, \arctan \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{3}}\right )} - \frac{3 \, C{\left (\frac{5 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{\sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/60*(A*((105*sin(d*x + c)/(cos(d*x + c) + 1) - 20*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(co
s(d*x + c) + 1)^5)/a^3 - 120*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^3) - 3*C*(5*sin(d*x + c)/(cos(d*x + c)
+ 1) - sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3)/d

________________________________________________________________________________________

Fricas [A]  time = 0.476095, size = 351, normalized size = 3.31 \begin{align*} \frac{15 \, A d x \cos \left (d x + c\right )^{3} + 45 \, A d x \cos \left (d x + c\right )^{2} + 45 \, A d x \cos \left (d x + c\right ) + 15 \, A d x -{\left ({\left (32 \, A - 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (17 \, A - 3 \, C\right )} \cos \left (d x + c\right ) + 22 \, A - 3 \, C\right )} \sin \left (d x + c\right )}{15 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/15*(15*A*d*x*cos(d*x + c)^3 + 45*A*d*x*cos(d*x + c)^2 + 45*A*d*x*cos(d*x + c) + 15*A*d*x - ((32*A - 3*C)*cos
(d*x + c)^2 + 3*(17*A - 3*C)*cos(d*x + c) + 22*A - 3*C)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x
+ c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{A}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec{\left (c + d x \right )} + 1}\, dx + \int \frac{C \sec ^{2}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec{\left (c + d x \right )} + 1}\, dx}{a^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**3,x)

[Out]

(Integral(A/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x) + Integral(C*sec(c + d*x)**2/(sec(c
 + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x))/a**3

________________________________________________________________________________________

Giac [A]  time = 1.21603, size = 140, normalized size = 1.32 \begin{align*} \frac{\frac{60 \,{\left (d x + c\right )} A}{a^{3}} - \frac{3 \, A a^{12} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 3 \, C a^{12} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 20 \, A a^{12} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 105 \, A a^{12} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 15 \, C a^{12} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{15}}}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

1/60*(60*(d*x + c)*A/a^3 - (3*A*a^12*tan(1/2*d*x + 1/2*c)^5 + 3*C*a^12*tan(1/2*d*x + 1/2*c)^5 - 20*A*a^12*tan(
1/2*d*x + 1/2*c)^3 + 105*A*a^12*tan(1/2*d*x + 1/2*c) - 15*C*a^12*tan(1/2*d*x + 1/2*c))/a^15)/d